
1

UNIT-5
Principles of Network Applications

1. Principles of Network Applications

 At the core of network application development is writing programs that run
on different end systems and communicate with each other over the network.
For example, in the Web application there are two distinct programs that
communicate with each other: the browser program running in the user’s host
(desktop, laptop, tablet, smart phone, and so on); and the Web server program
running in the Web server host.

 The application layer provides services to the user. Communication is
provided using a logical connection, which means that the two application
layers assume that there is an imaginary direct connection through which they
can send and receive messages.

Providing Services:The application layer provides many services, including:
 Simple Mail Transfer Protocol
 File transfer
 Web surfing
 Email clients

 Network data sharing
 Virtual terminals
 Various file and data operations

� Network Application Architecture:The application architecture is designed
by the application developer and dictates how the application is structured over the
various end systems. In choosing the application architecture, an application
developer will likely draw on one of the two predominant architectural paradigms
used in modern network applications: the client-server architecture or the peer-to-
peer (P2P) architecture

In a client-server architecture, there is an always-on host, called the server,
which services requests from many other hosts, called clients. A classic example is
the Web application for which an always-on Web server services requests from
browsers running on client hosts. When a Web server receives a request for an
object from a client host, it responds by sending the requested object to the client
host.
Some of the better-known applications with a client-server architecture include the
Web, FTP, Telnet, and e-mail.

A new paradigm, called the peer-to-peer paradigm (often abbreviated P2P
paradigm) has emerged to respond to the needs of some new applications. In this
paradigm, there is no need for a server process to be running all the time and waiting
for the client processes to connect. The responsibility is shared between peers. A
computer connected to the Internet can provide service at one time and receive
service at another time. A computer can even provide and receive services at the
same time.

2

Fig: a) client-server architecture,b) peer-to-peer (P2P) architecture
� Processes communication
 In a client-server paradigm, communication at the application layer is between
two running application programs called processes: a client and a server.
 A client is a running program that initializes the communication by sending a
request; a server is another application program that waits for a request from a client.
 The server handles the request received from a client, prepares a result, and
sends the result back to the client.
 This definition of a server implies that a server must be running when a request
from a client arrives, but the client needs to be run only when it is needed.
 This means that if we have two computers connected to each other somewhere,
we can run a client process on one of them and the server on the other.

The Interface Between the Process and the Computer Network
Several APIs have been designed for communication: socket interface,
Socket interface is a way of connecting two nodes on a network to communicate
with each other. One socket(node) listens on a particular port at an IP, while other
socket reaches out to the other to form a connection. Server forms the listener
socket while client reaches out to the server.
A socket is the interface between the application layer and the transport layer within
a host. It is also referred to as the Application Programming Interface (API) between
the application and the network, since the socket is the programming interface with
which network applications are built.

Fig: Position of the socket interface

3

Fig: Application processes, sockets and underlying transpport protocol

2. The Web and HTTP
� World Wide Web (WWW)
The Hyper Text Transfer Protocol (HTTP), the Web’s application-layer protocol, is at
the heart of the Web. HTTP is implemented in two programs: a client program and a
server program. The client program and server program talk to each other by
exchanging HTTP messages.
 A Web page (also called a document) consists of objects. An object is simply a
file—such as an HTML file, a JPEG image, a Java applet, or a video clip—that is
addressable by a single URL. Most Web pages consist of a base HTML file and
several referenced objects.
For example, if a Web page contains HTML text and five JPEG images, then the Web
page has six objects: the base HTML file plus the five images.
 The base HTML file references the other objects in the page with the objects’
URLs. Each URL has two components: the hostname of the server that houses the
object and the object’s path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname and /someDepartment/ picture.gif for a
path name.
 The Web browsers (such as Internet Explorer and Firefox) implement the client
side of HTTP, we will use the words browser. Web servers, which implement the
server side of HTTP, house Web objects, each addressable by a URL. Popular Web
servers include Apache and Microsoft Internet Information Server.

 HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client
and server in detail is illustrated in Figure.When a user requests a Web page (for
example, clicks on a hyperlink), the browser sends HTTP request messages for the
objects in the page to the server. The server receives the requests and responds with
HTTP response messages that contain the objects.

4

Fig: HTTP request-response behaviour

� Web Documents: The documents in the WWW can be grouped into three broad
categories: static, dynamic, and active.
 Static Documents: Static documents are fixed-content documents that are
created and stored in a server. The client can get a copy of the document only.
 Dynamic Documents: A dynamic document is created by a web server whenever
a browser requests the document.
When a request arrives, the web server runs an application program or a script that
creates the dynamic document. The server returns the result of the program or script
as a response to the browser that requested the document.
 Active Documents: For many applications, we need a program or a script to be
run at the client site. These are called active documents. For example, suppose we
want to run a program that creates animated graphics on the screen or a program
that interacts with the user.

� HyperText Transfer Protocol (HTTP)
The HyperText Transfer Protocol (HTTP) is used to define how the client-server
programs can be written to retrieve web pages from the Web.
An HTTP client sends a request; an HTTP server returns a response. The server uses
the port number 80; the client uses a temporary port number.
HTTP uses the services of TCP is a connection-oriented and reliable protocol. This
means that, before any transaction between the client and the server can take place,
a connection needs to be established between them. After the transaction, the
connection should be terminated.

� Nonpersistent versus Persistent Connections:
Nonpersistent Connections
In a nonpersistent connection, one TCP connection is made for each
request/response.
The following lists the steps in this strategy:
1. The client opens a TCP connection and sends a request.
2. The server sends the response and closes the connection.
3. The client reads the data until it encounters an end-of-file marker; it then closes
the connection.

5

Persistent Connections: In a persistent connection, the server leaves the connection
open for more requests after sending a response. The server can close the
connection at the request of a client or if a time-out has been reached. The sender
usually sends the length of the data with each response.

� Message Formats:The HTTP protocol defines the format of the request and
response messages. Each message is made of four sections. The first section in the
request message is called the requestline; the first section in the response message
is called the statusline. The other three sections have the same names in the
request and response messages.
Request Message:the first line in a request message is called a request line. There
are three fields in this line separated by one space and terminated by two characters
(carriage return and line feed). The fields are called method, URL, and version.
 The methodfield defines the request types. In version 1.1 of HTTP, several
methods are defined, as shown in Table. The client uses the GET method to send a
request.
 The second field, URL. It defines the address and name of the corresponding web
page.
 The third field, version, gives the version of the protocol; the most current version
of HTTP is 1.1.

6

Fig: Formats of the request and response messages

Response Message
The format of the response message is also shown in Figure. The first line in a
response message is called the statusline. There are three fields in this line
separated by spaces and terminated by a carriage return and line feed.
 The first field defines the version of HTTP protocol, currently 1.1.
 The status code field defines the status of the request. It consists of three digits.
Whereas the codes in the 100 range are only informational, the codes in the 200
range indicate a successful request.
 The status phrase explains the status code in text form.

� Web Caching: Proxy Servers: HTTP supports proxy servers. A proxy server is a
computer that keeps copies of responses to recent requests.
 The HTTP client sends a request to the proxy server. The proxy server checks its
cache.
 If the response is not stored in the cache, the proxy server sends the request to
the corresponding server.
 Incoming responses are sent to the proxy server and stored for future requests
from other clients.
 The proxy server reduces the load on the original server, decreases traffic.
 Note that the proxy server acts as both server and client. When it receives a
request from a client for which it has a response, it acts as a server and sends the
response to the client.
 The proxy servers are normally located at the client site.

Fig: Example of a proxy server

3. Electronic Mail(e-mail) in the Internet
Electronic mail (or e-mail) allows users to exchange messages. E-mail is considered
a one-way transaction. When Sender sends an email to Receiver, she may expect a
response, but this is not a mandate. Receiver may or may not respond. If he does

7

respond, it is another one-way transaction.
� Architecture:To explain the architecture of e-mail, we give a common scenario,
as shown in Figure.

Fig: Common scenario

Sender and receiver use three different agents: a user agent (UA), a message
transfer agent (MTA), and a message access agent (MAA).

When Sender needs to send a message to Receiver, she runs a UA program to
prepare the message and send it to her mail server. The mail server at her site uses
a queue (spool) to store messages waiting to be sent. The message needs to be
sent through the Internet from Sender’s site to Receiver’s site using an MTA. Here
two message transfer agents are needed: one client and one server.

Client-server programs on the Internet, the server needs to run all the time
because it does not know when a client will ask for a connection. The client can be
triggered by the system when there is a message in the queue to be sent. The user
agent at the Receiver site allows Receiver to read the received message. Receiver
later uses an MAA client to retrieve the message from an MAA server running on the
second server.
The electronic mail system needs two UAs, two pairs of MTAs (client and server),
and a pair of MAAs (client and server).

� User Agent(UA):
The first component of an electronic mail system is the user agent (UA). It provides
service to the user to make the process of sending and receiving a message easier.
 A user agent is a software package (program) that composes reads, replies to,
and forwards messages. It also handles local mailboxes on the user computers.

� Sending Mail: To send mail, the user, through the UA, creates mail that looks very
similar to postal mail. It has an envelope and a message.
 The envelope usually contains the sender address, the receiver address, and
other information.
 The message contains the header and the body. The header of the message
defines the sender, the receiver, the subject of the message. The body of the
message contains the actual information to be read by the recipient.
� Receiving Mail: If a user has mail, the UA informs the user with a notice. If the
user is ready to read the mail, a list is displayed in which each line contains a
summary of the information.

The summary usually includes the sender mail address, the subject, and the time the
mail was sent or received.

8

� Addresses: To deliver mail, a mail handling system must use an addressing
system with unique addresses. In the Internet, the address consists of two parts: a
local part and a domain name, separated by a @ sign

Fig: E-mail address

 The local part defines the name of a special file, called the user mailbox, where all
the mail received for a user is stored for retrieval by the message access agent.

 The domain name assigned to each mail exchanger either comes from the DNS
database or is a logical name (for example, the name of the organization).

� Message Transfer Agent: SMTP
The e-mail is one of those applications that need three uses of client-server
paradigms to accomplish its task. Figure shows these three client-server
applications. We refer to the first and the second as Message Transfer Agents
(MTAs), the third as Message Access Agent (MAA).

Fig: Protocols used in electronic mail

The formal protocol that defines the MTA client and server in the Internet is called
Simple Mail Transfer Protocol (SMTP). SMTP is used two times, between the sender
and the sender’s mail server and between the two mail servers. SMTP simply defines
how commands and responses must be sent back and forth.

� Commands and Responses: SMTP uses commands and responses to transfer
messages between an MTA client and an MTA server. The command is from an
MTA client to an MTA server; the response is from an MTA server to the MTA client.

Commands are sent from the client to the server. It consists of a keyword followed
by zero or more arguments.

Table: SMTP commands
Responses are sent from the server to the client. A response is a three digit code
that may be followed by additional textual information.

9

Table: Responses

� Mail Transfer Phases: The process of transferring a mail message occurs in
three phases: connection establishment, mail transfer, and connection termination.
Connection Establishment: After a client has made a TCP connection to the well-
known port 25, the SMTP server starts the connection phase.
Message Transfer: After connection has been established between the SMTP client
and server, a single message between a sender and one or more recipients can be
exchanged.
Connection Termination: After the message is transferred successfully, the client
terminates the connection.

� Message Access Agent (MAA):The third stage uses a message access
agent. Currently two message access protocols are available: Post Office Protocol,
version 3 (POP3) and Internet Mail Access Protocol, version 4 (IMAP4).
POP3

� Post Office Protocol, version 3 (POP3):is simple but limited in functionality. The
client POP3 software is installed on the recipient computer; the server POP3
software is installed on the mail server.
 Mail access starts with the client when the user needs to download its e-mail
from the mailbox on the mail server.
 The client opens a connection to the server on TCP port 110. It then sends its
user name and password to access the mailbox. The user can then list and retrieve
the mail messages, one by one.
 POP3 has two modes: the delete mode and the keep mode. In the delete mode,
the mail is deleted from the mailbox after each retrieval. In the keep mode, the mail
remains in the mailbox after retrieval.

� IMAP4: Internet Mail Access Protocol, version 4 (IMAP4) is a mail access
protocol. IMAP4 is similar to POP3, but it has more features; IMAP4 is more powerful
and more complex.
IMAP4 provides the following extra functions:

 A user can check the e-mail header prior to downloading.
 A user can search the contents of the e-mail for a specific string of characters

prior to downloading.
 A user can partially download e-mail.
 A user can create, delete, or rename mailboxes on the mail server.
 A user can create a hierarchy of mailboxes in a folder for e-mail storage.

4. Domain Name System (DNS)or DNS—The Internet’s Directory
Service
To identify an entity, TCP/IP protocols use the IP address, which uniquely identifies
the connection of a host to the Internet. People prefer to use names instead of
numeric addresses. Therefore, the Internet needs to have a directory system that can
map a name to address.

Domain Name System directory system in the Internet can map names to IP
addresses.Figure shows how TCP/IP uses a DNS client and a DNS server to map a

10

name to an address. A user wants to use a file transfer client to access the
corresponding file transfer server running on a remote host. The user knows only the
file transfer server name, such as afilesource.com.

However, the TCP/IP suite needs the IP address of the file transfer server to make
the connection. The following six steps map the host name to an IP address:
1. The user passes the host name to the file transfer client.
2. The file transfer client passes the host name to the DNS client.
3. Each computer knows the address of one DNS server. The DNS client sends a
message to a DNS server with a query that gives the file transfer server name using
the known IP address of the DNS server.
4. The DNS server responds with the IP address of the desired file transfer server.
5. The DNS server passes the IP address to the file transfer client.
6. The file transfer client now uses the received IP address to access the file transfer
server.

Fig: Purpose of DNS

� Name Space: A name space that maps each address to a unique name can
be organized in two ways: flat or hierarchical.
 In a flat name space, a name is assigned to an address. A name in this space is a
sequence of characters without structure
 In a hierarchical name space, each name is made of several parts. The first part
can define the nature of the organization, the second part can define the name of an
organization, the third part can define departments in the organization.

� Domain Name Space:To have a hierarchical name space, a domain name
space was designed. In this design the names are defined in an inverted-tree
structure with the root at the top. The tree can have only 128 levels: level 0 (root) to
level 127

11

Fig: Domain name space

Label: Each node in the tree has a label, which is a string with a maximum of 63
characters. The root label is a null string (empty string). DNS requires that children of
a node (nodes that branch from the same node) have different labels

Domain Name: Each node in the tree has a domain name. A full domain name is a
sequence of labels separated by dots (.). The domain names are always read from
the node up to the root. The last label is the label of the root (null).

If a label is terminated by a null string, it is called a fully qualified domain name
(FQDN). If a label is not terminated by a null string, it is called a partially qualified
domain name (PQDN). A PQDN starts from a node, but it does not reach the root.

Fig: Domain names and labels

� Domain:A domain is a subtree of the domain name space. The name of the
domain is the name of the node at the top of the subtree. Figure shows some
domains. Note that a domain may itself be divided into domains.

Fig: Domains

� Zone: Since the complete domain name hierarchy cannot be stored on a single
server, it is divided among many servers. What a server is responsible for or has
authority over is called a zone.

We can define a zone as a contiguous part of the entire tree. If a server accepts
responsibility for a domain and does not divide the domain into smaller domains, the
“domain” and the “zone” refer to the same thing.

12

Fig: Zone

� Root Server:A root server is a server whose zone consists of the whole tree. A
root server usually does not store any information about domains but delegates its
authority to other servers, keeping references to those servers. The root servers are
distributed all around the world.
Primary and Secondary Servers: DNS defines two types of servers: primary and
secondary.
A primary server is a server that stores a file about the zone for which it is an
authority. It is responsible for creating, maintaining, and updating the zone file. It
stores the zone file on a local disk.

A secondary server is a server that transfers the complete information about a zone
from another server (primary or secondary) and stores the file on its local disk. The
secondary server neither creates nor updates the zone files.

� DNS in the Internet: DNS is a protocol that can be used in different platforms.
In the Internet, the domain name space (tree) was originally divided into three
different sections: generic domains, country domains, and the inverse domains.

Generic Domains: The generic domains define registered hosts according to their
generic behavior. Each node in the tree defines a domain, which is an index to the
domain name space database.

Table: Generic domain labels

Country Domains: The country domains section uses two-character country
abbreviations (e.g., us for United States).

Fig: Country domains

13

Inverse Domain: The inverse domain is used for mapping an address to a name.
When the server has received a request from the client, and the server contains the
files of only authorized clients. To determine whether the client is on the authorized
list or not, it sends a query to the DNS server and ask for mapping an address to the
name.

5. FTP (File Transfer Protocol)
File Transfer Protocol (FTP) is the standard protocol provided by TCP/IP for copying
a file from one host to another.
 For example, two systems may use different file name conventions. Two
systems may have different ways to represent data. Two systems may have
different directory structures. All of these problems have been solved by FTP in a
very simple and elegant approach.
 Although we can transfer files using HTTP, FTP is a better choice to transfer
large files or to transfer files using different formats.

Fig: FTP
 The client has three components: the user interface, the client control process,
and the client data transfer process.
 The server has two components: the server control process and the server data
transfer process.
 The controlconnection is made between the control processes. The
dataconnection is made between the data transfer processes.

� Two Connections
 The two connections in FTP have different lifetimes. The control connection
remains connected during the entire interactive FTP session.
 The data connection is opened and then closed for each file transfer activity. It
opens each time commands that involve transferring files are used, and it closes
when the file is transferred.
 FTP uses two well-known TCP ports: port 21 is used for the control connection,
and port 20 is used for the data connection.

� Control Connection:During this control connection, commands are sent from the

14

client to the server and responses are sent from the server to the client.
Commands, which are sent from the FTP client control process, are in the form of
ASCII uppercase, which may or may not be followed by an argument. Some of the
most common commands are shown in Table.

Table: Some FTP commands
Every FTP command generates at least one response. A response has two parts: a
three-digit number followed by text.

Table: Some responses in FTP

� Data Connection:The data connection uses the well-known port 20 at the server
site. The purpose and implementation of the data connection are different from
those of the control connection. We want to transfer files through the data
connection. The client must define the type of file to be transferred, the structure of
the data, and the transmission mode.

Three attributes of communication: file type, data structure, and transmission mode.
 File Type: FTP can transfer one of the following file types across the data
connection: ASCII file, EBCDIC file, or image file.

 Data Structure: FTP can transfer a file across the data connection using one of
the following interpretations of the structure of the data: file structure, record
structure, or page structure. The file structure is a continuous stream of bytes. In the
record structure, the file is divided into records. This can be used only with text files.
In the page structure, the file is divided into pages, with each page having a page
number and a page header.
 Transmission Mode: FTP can transfer a file across the data connection using
one of the following three transmission modes: stream mode, block mode, or
compressed mode.

File Transfer: File transfer occurs over the data connection under the control of the
commands sentover the control connection. However, we should remember that file
transfer in FTPmeans one of three things: retrieving a file (server to client), storing a
file (client toserver), and directory listing (server to client).

� Security for FTP
The FTP protocol was designed when security was not a big issue. Although FTP

15

requires a password, the password is sent in plaintext (unencrypted), which means it
can be intercepted and used by an attacker.
The data transfer connection also transfers data in plaintext, which is insecure. To
be secure, one can add a Secure Socket Layer between the FTP application layer and
the TCP layer. In this case FTP is called SSL-FTP.

6. Peer-to-Peer Applications: Video Streaming and Content
Distribution Networks
� Peer-to-Peer Applications: Video Streaming
Peer-to-Peer (P2P) technology has recently become a promising approach to provide
live streaming services or Video-on-Demand (VoD) services to a huge number of the
concurrent users over a global area. P2P streaming systems can be classified into
P2P live streaming systems and P2P VoD systems.
Peer-to-peer (P2P) is open-source and requires a direct connection between two or
more devices to create a real-time audio and video data stream without any cloud or
outside servers. The device of the meeting host acts as a server and can initiate a
call by sending its IP address directly to the attendee's computer.
There are several ways audio and video calls can form a stable connection, one
being peer-to-peer (P2P). This real-time communication solution is a popular choice
among users who prioritize security, bandwidth, and a lightweight architecture but is
less so among those who wish to scale their number of meeting participants.

How Peer-to-Peer (P2P) Conferencing Works
P2P relies upon a simple architecture that is easy for developers to create and the
end-user to enjoy. Instead of broadcasting your live stream to a server that must
transmit the data to the other meeting participants, peer-to-peer communication
bypasses the need for an authentication server. It streams audio and video from one
computer directly to another.

Video Streaming Technology
Video streaming technology is one way to deliver video over the Internet. Using
streaming technologies, the delivery of audio and video over the Internet can reach
many millions of customers using their personal computers, PDAs, mobile
smartphones or other streaming devices.

Fig: Architecture of streaming video on the transmitter side

16

Fig: Architecture of streaming video on the receiver side

� Peer-to-Peer Applications: Content Distribution Networks
Peer-to-peer (P2P) content distribution is a model that allows the distribution of files,
videos, software or other applications
The Peer-to-Peer method entails the distribution of files and information directly
between users (terminals) without going through a server.
 A CDN (Content Distribution Network). In it, a provider sets up a distributed
collection of machines at locations inside the Internet and uses them to serve
content to clients. This is the choice of the big players. An alternative architecture is
a P2P (Peer-to-Peer) network
 P2P CDNs work by distributing content delivery across a network of peer nodes
rather than relying on a single server or origin point.
 This approach can improve performance and reliability by reducing the
dependence on any one node in the network.
 Additionally, P2P CDNs often allow for more efficient bandwidth and resources,
as content is shared among the nodes rather than being sent to each node
separately.

� A Content Delivery Network, or a CDN as it is commonly called, is an essential
part of any modern website and application. The content that you view on your
phones today, on any website or app, videos or images, or any other kind of content,
is very likely to be delivered using a content delivery network.
 CDNs (Content Delivery Networks) turn the idea of traditional Web caching on its
head. Instead, of having clients look for a copy of the requested page in a nearby
cache, it is the provider who places a copy of the page in a set of nodes at different
locations and directs the client to use a nearby node as the server.
 An example of the path that data follows when it is distributed by a CDN is shown
in Fig. It is a tree. The origin server in the CDN distributes a copy of the content to
other nodes in the CDN, in Sydney, Boston, and Amsterdam, in this example. This is
shown with dashed lines. Clients then fetch pages from the nearest node in the CDN.
This is shown with solid lines. In this way, the clients in Sydney both fetch the page
copy that is stored in Sydney; they do not both fetch the page from the origin server,
which may be in Europe.

17

Fig: Content Distribution tree

Some examples of a file-sharing peer-to-peer network include BitTorrent, uTorrent,
Ares Galaxy, FrostWire, and BitComet.

